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Abstract
We study the time evolution of an atom suddenly coupled to a thermal radiation
field. As a simplified model of the atom-electromagnetic field system we use
a system composed of a harmonic oscillator linearly coupled to a scalar field
in the framework of the recently introduced dressed coordinates and dressed
states. We show that the time evolution of the thermal expectation values
for the occupation number operators depends exclusively on the probabilities
associated with the emission and absorption of field quanta. In particular, the
time evolution of the number operator associated with the atom is given in
terms of the probability of remaining in the first excited state and the decay
probabilities from this state by emission of field quanta of frequencies ωk . Also,
it is shown that independent of the initial state of the atom, it thermalizes with
the thermal radiation field in a time scale of the order of the inverse coupling
constant.

PACS numbers: 03.65.Yz, 05.70.Ln, 05.30.Jp

1. Introduction

The study of systems out of thermal equilibrium has been since a long-time ago one of the
main active areas in physics. The actual interest ranging from the condensed matter physics to
cosmology. In most cases the interest is in the thermalization process, the determination of the
relevant time scales involved, together with an understanding of the generation of entropy and
particle production in non-equilibrium dissipative systems interacting with an environment.
However, despite the importance associate with these processes, non-equilibrium problems are
still poorly understood [1]. The nontrivial non-equilibrium dynamics of fields, for instance,
have diverse applications, finding use, e.g., in the studies concerning the recent experiments in
the ultra-relativistic heavy-ion collision [2]; applications to the current problems of parametric
resonance and particle production in cosmology [3]; or in the context of the recent studies
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involving the intrinsic dissipative nature of interacting fields [4–6]. In addition to that,
typical problems we have in mind to study are those related to the nontrivial out-of-thermal
equilibrium dynamics associated with phase transitions in different physical systems. As
a few examples, we may cite include the current applications to the study of formation of
Bose–Einstein condensates after a temperature quench [7], or in the study of the dynamics of
coupled fields displaced from their ground states as determined by their free energy densities
[8]. For recent attempts to solve some related problems to the study of systems out of thermal
equilibrium (see [9–14, 16–18]), where use has been made of either analytical or numerical
approaches in the context of specific or general models. For example, numerical studies
have been performed in specific field theoretical models in [9–12], where the problems of
equilibration and thermalization have been studied. On the other hand, in [14] the role of
chaos as a mechanism for quantum thermalization has been considered. By supposing the
validity of Berry’s conjecture [15] it has been shown that a gas of rarefied hard-spheres
approaches a Maxwell–Boltzmann, Bose–Einstein or Fermi–Dirac distribution according
to whether the wavefunctions are taken to be non-symmetric, completely symmetric or
completely antisymmetric functions of the particle position.

In recent works, in analogy with the renormalized fields in quantum field theory, the
concepts of dressed coordinates and dressed states have been introduced [19–21]. These
concepts have been introduced in the context of an atom, approximated by an harmonic
oscillator, linearly coupled to a scalar field, the whole system being confined in a spherical
cavity of the diameter L. In terms of dressed coordinates, dressed states have been defined
as the physically measurable states. The dressed states having the physical correct property
of stability of the oscillator (atom) ground state in the absence of field quanta (the quantum
vacuum). For a recent clear explanation see [25]. Also, the formalism has proved the
technical advantage of allowing an exact computation of the probabilities associated with
the different oscillator (atom) radiation processes [26]. For example, we obtained easily the
probability of the atom to decay spontaneously from the first excited state to the ground
state for arbitrary coupling constant, weak or strong and for arbitrary cavity size. For weak
coupling constant and in the continuum limit L → ∞ we obtained the old-known result: e−�t

[19]. Also, considering a cavity of sufficiently small radius [20], the method accounted for,
the experimentally observed, inhibition of the spontaneous decaying processes of the atom
[22, 23]. In [24, 25], the concept of dressed coordinates and states has been extended to the
case in which nonlinear interactions between the oscillator and the field modes are taken into
account. Furthermore, in [27] we considered the oscillator electromagnetic field interaction
model and in [28] dressed coordinates and states have been introduced in the path integral
formalism.

The aim of the present work is to study the thermalization process in the framework of the
aforementioned dressed coordinates and states. The physical situation that we have in mind
is an atom (approximated by an harmonic oscillator) initially in an arbitrary state, suddenly
coupled to a thermal radiation field (approximated by an infinite set of harmonic oscillators
at thermal equilibrium). Then, the purpose is to study the time evolution of this initial state.
Fundamental questions that we have to solve are: is the atom reaches a final equilibrium state?
and if this is the case, what is the meaning of this final equilibrium state? In relation with these
questions, it is also important to know the time necessary for the atom to thermalize with the
thermal radiation field. By solving exactly this model we expect to gain some insight to solve
more complicated problems.

As already stated, in this paper we will treat a specific model for an atom coupled to a
thermal radiation field. Initially, the system is described by a density operator of the form

ρ̂ = ρ̂0 ⊗ ρ̂β, (1)
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where ρ̂0 is the density operator for the atom, which can be in an arbitrary pure or mixed
state and ρ̂β is the density operator for the radiation field at thermal equilibrium at some given
temperature β−1. We specify below the form of ρ̂β . At some time, that we take as t = 0,
the atom is suddenly coupled to the thermal radiation field, afterward (the density operator of)
the total system evolves according to the Liouville–Von Neumann equation. An equivalent
description is to maintain constant the density operator and take the operators (related to the
physical observables) as time dependent. Then, these operators evolve in time according to
the Heisenberg equation of motion

∂

∂t
Ô(t) = i[Ĥ , Ô(t)], (2)

where Ô(t) is a time-dependent operator associated with some physical observable and Ĥ is
the Hamiltonian for the atom-electromagnetic field system. As a model for this system we
consider the one with Hamiltonian given by

Ĥ = 1

2

(
p̂2

0 + ω2
0q̂

2
0

)
+

1

2

N∑
k=1

(
p̂2

k + ω2
k q̂

2
k − 2ckq̂kq̂0

)
+

1

2

N∑
k=1

c2
k

ω2
k

q̂2
0 , (3)

where the limit N → ∞ is understood, the subscript 0 refers to the atom approximated by an
harmonic oscillator of frequency ω0 and k = 1, 2, . . . , N refer to the harmonic field modes.
Also, we take ωk = 2πk/L, ck = ηωk, η = √

2g�ω and �ω = ωk+1 − ωk = 2π/L, where
g is a frequency dimensional coupling constant. At the end we will take the continuum limit
L → ∞. The last term in equation (3) assures the positiveness of the Hamiltonian and it can
be seen as a frequency renormalization of the harmonic oscillator [29, 30].

A similar model to the one given by equation (3) has been used repeatedly from time to
time as a simplified model to describe the quantum Brownian motion [31–34], the decoherence
problem and other related problems [35, 36]. However, in all these previous works no use
has been made of the dressed coordinates. As we explain in the following section, when
considering the Hamiltonian given by equation (3) as the one for an atom–field electromagnetic
field system, the introduction of dressed (renormalized) coordinates will be necessary in order
to guarantee the stability of the atom ground state in the absence of field quanta.

Along this paper we use natural units h̄ = c = kB = 1.

2. Dressed (renormalized) coordinates and the dressed density operator

To make this paper self-contained in this section we define what has been called dressed
coordinates and dressed states in [19–21]. To understand the necessity of introducing dressed
coordinates in the system atom-electromagnetic field system described by Hamiltonian (3),
take ck = 0. In this case, the resulting free Hamiltonian admits the following eigenfunctions:

ψn0n1···nN
(q) ≡ 〈q|n0, n1, . . . , nN 〉

=
N∏

µ=0

[(ωµ

π

)1/4
√

2−nµ

nµ!
Hnµ

(
√

ωµqµ) e− 1
2 ωµq2

µ

]
. (4)

The physical meaning of ψn0n1···nN
(q) in this case is clear, it represents the atom in its n0th

excited level and nk photons of frequencies ωk . Now, consider the state ψn00···0(q): the excited
atom in the quantum vacuum. We know from experience that any excited level of the atom is
unstable. The explanation of this fact is that the atom is not isolated from interacting with the
quantum electromagnetic field. This interaction in our model is given by the linear coupling
of q0 with qk . Obviously, when we take into account this interaction any state of the type
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ψn00···0(q) is rendered unstable. But there is a problem, the state ψ00···0(q), that represents the
atom in its ground state and no photons, is also unstable contradicting the experimental fact of
the stability of the atom ground state. What is wrong? The first thing that comes to our mind
is to think that the model given by equation (3) is wrong. Certainly, we know that the correct
theory to describe this physical system is quantum electrodynamics. On the other hand, such
a description could be extremely complicated. If we aim to maintain the model as simple as
possible and still insist in describing it by the Hamiltonian given in equation (3), what we can
do in order to take into account the stability of the atom ground state? The answer lies in the
spirit of the renormalization program in quantum field theory: the coordinates qµ that appear
in the Hamiltonian are not the physical ones, they are bare coordinates. We introduce dressed
(or renormalized) coordinates, q ′

0 and q ′
k , respectively for the dressed atom and the dressed

photons. We define these coordinates as the physically meaningful ones. In terms of these
coordinates we define the dressed states by

ψn0n1···nN
(q ′) ≡ 〈q ′|n0, n1, . . . , nN 〉d

=
N∏

µ=0

[(ωµ

π

)1/4
√

2−nµ

nµ!
Hnµ

(
√

ωµq ′
µ) e− 1

2 ωµ(q ′
µ)2

]
, (5)

where the subscript d means dressed state. The dressed states given by equation (5) are
defined as the physically measurable states and describe in general, the physical atom in
the n0th excited level and nk physical photons of frequencies ωk . Obviously, in the limit
in which the coupling constant ck vanishes the renormalized coordinates q ′

µ must approach
the bare coordinates qµ. Now, in order to relate the bare and dressed coordinates we have
to use the physical requirement of stability of the dressed ground state. The dressed ground
state will be stable if it is defined as eigenfunction of the interacting Hamiltonian given by
equation (3). Also the dressed ground state must be the one of minimum energy, that is, it
must be defined as being identical (or proportional) to the ground-state eigenfunction of the
interacting Hamiltonian. From this definition, one can construct the dressed coordinates in
terms of the bare ones. Then, the first step in order to obtain the dressed coordinates is to solve
for the ground-state eigenfunction of the Hamiltonian given in equation (3). This bilinear
Hamiltonian can be diagonalized by introducing normal coordinates and momenta Q̂r and P̂r ,

q̂µ =
N∑

r=0

t rµQ̂r , p̂µ =
N∑

r=0

t rµP̂r , µ = (0, k), (6)

where
{
t rµ
}

is an orthonormal matrix whose elements are given by [37]

t rk = ck(
ω2

k − 
2
r

) t r0 , t r0 =
[

1 +
N∑

k=1

c2
k(

ω2
k − 
2

r

)2

]− 1
2

(7)

with 
r being the normal frequencies corresponding to the collective modes of the coupled
system and given as solutions of the equation

ω2
0 − 
2

r =
N∑

k=1

c2
k


2
r

ω2
k

(
ω2

k − 
2
r

) . (8)

In terms of normal coordinates and momenta the Hamiltonian given by equation (3) reads as

Ĥ = 1

2

N∑
r=0

(
P̂ 2

r + 
2
r Q̂

2
r

)
, (9)
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then, the eigenfunctions of the Hamiltonian are given by

φn0n1···nN
(Q) ≡ 〈Q|n0, n1, . . . , nN 〉c

=
N∏

r=0

⎡
⎣(
r

π

)1/4
√

2−nr

nr !
Hnr

(
√


rQr) e− 1
2 
rQ

2
r

⎤
⎦ , (10)

where the subscript c means collective state. Now, using the definition of the dressed
coordinates: ψ00···0(q ′) ∝ φ00...0(Q) and using equations (5) and (10), we get e− 1

2

∑N
µ=0 ωµ(q ′

µ)2 =
e− 1

2

∑N
r=0 
rQ

2
r , from which the dressed coordinates are obtained as

q ′
µ =

N∑
r=0

√

r

ωµ

trµQr. (11)

2.1. The dressed density operator

If no use is made of the dressed coordinates and states, the density operator for the radiation
field at thermal equilibrium in equation (1) would be given by

ρ̂β = Z−1
β exp

[
−β

N∑
k=1

ωk

(
â
†
kâk +

1

2

)]
, (12)

where âk and â
†
k are annihilation and creation operators and given by

âµ = 1√
2ωµ

p̂µ − i

√
ωµ

2
q̂µ (13)

â†
µ = 1√

2ωµ

p̂µ + i

√
ωµ

2
q̂µ. (14)

In equation (12) Zβ = ∏N
k=1 zk

β is the partition function of the thermal radiation field, where

zk
β = Trk[e−βωk(â

†
k âk+1/2)] = 1

2 sinh
(

βkωk

2

) . (15)

Also, the density operator ρ̂0 for the atom would be written in terms of the coordinates q0.
However, as explained above, in the context of an atom-electromagnetic field system and

described by Hamiltonian given by equation (3) it is necessary to redefine what the physical
coordinates are for the atom and field modes. Then, instead of the density operator given by
equation (12), we have to consider the one written in terms of dressed coordinates q ′

k , as the
physically density operator for the radiation field at thermal equilibrium,

ρ̂β = Z−1
β exp

[
−β

N∑
k=1

ωk

(
â

′†
k â′

k +
1

2
.

)]
, (16)

where â′
k and â′

k
† are dressed annihilation and creation operators and given in terms of the

dressed coordinates q ′
k by

â′
µ = 1√

2ωµ

p̂′
µ − i

√
ωµ

2
q̂ ′

µ (17)

â′†
µ = 1√

2ωµ

p̂′
µ + i

√
ωµ

2
q̂ ′

µ, (18)
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where in position representation p̂′
µ = −i ∂

∂q ′
µ

. Also, the density operator for the atom must be

taken as the one written in terms of the dressed coordinate q ′
0.

Now, we are ready to study the time evolution of thermal expectation values for relevant
physical operators. We will be mainly interested in the present work in the study of the time
evolution of the thermal expectation value of the time-dependent number occupation operator
associated with the dressed oscillator (the atom) â′

0
†(t)â′

0(t).

3. The thermalization process

We consider as the initial state of the atom-electromagnetic system that given by equation (1),
where ρ̂0 describes an arbitrary, pure or mixed, state for the atom and ρ̂β , given by
equation (16), describes the thermal radiation field at some given temperature β−1. With
this condition we can state the thermalization problem for this system as follows: (i) the
initial state given by equation (1) will evolve in time to a final equilibrium state? and (ii)
if the system evolves to a final equilibrium state, is this an state of thermal equilibrium?.
Also we would like to know the mean-time necessary for the system to reach a final thermal
equilibrium state. To answer these questions we have to solve for the time dependence of the
density operator or alternatively solve the Heisenberg equation to obtain the time dependence
of relevant operators.

Since any operator can be written in terms of annihilation and creation operators, it will
be sufficient to solve for the time-dependent annihilation and creation operators in order to
solve the out of thermal equilibrium problem. Using the Heisenberg equation of motion,
equation (2), we have for the time-dependent annihilation operator â′

µ(t),

∂

∂t
â′

µ(t) = i[Ĥ , â′
µ(t)] (19)

and a similar equation for â′
µ
†(t). Obviously at t = 0, â′

µ(0) is given by equation (17). This
equation can be written, using equations (6) and (11), as

â′(0) =
N∑

r,ν=0

(
t rµt rν√
2
r

p̂ν − i

√

r

2
t rµt rν q̂ν

)
. (20)

In order to solve equation (19) we write â′
µ(t) as

â′
µ(t) =

N∑
ν=0

(B(t)µνp̂ν + Ḃµν(t)q̂ν), (21)

where B(t)µν is a time-dependent c-number and the dot means derivative with respect to
time. Replacing equations (3) and (21) in equation (19), working with the commutators and
identifying identical operators in both sides of the resultant equation, we obtain the following
coupled equations for Bµν(t):

B̈µ0(t) +

(
ω2

0 +
N∑

k=1

c2
k

ω2
k

)
Bµ0(t) −

N∑
k=1

ckBµk(t) = 0 (22)

and

B̈µk(t) + ω2
kBµk(t) − ckBµ0(t) = 0. (23)

Note that above equations are identical to the classical equations of motion for the bare
coordinates qµ that can be obtained using the Hamilton equations of motion for the Hamiltonian
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given by equation (3). Then we can decouple equations (22) and (23) with the same matrix{
t rµ
}

that diagonalizes the Hamiltonian (3), that is, we can write for Bµν(t),

Bµν(t) =
N∑

r=0

t rµCr
ν(t) (24)

and replacing the above equation in equations (22) and (23), these equations decouple into

C̈r
µ(t) + 
2

rC
r
µ(t) = 0, (25)

from which we obtain Cr
µ(t) = ar

µ ei
r t + br
µ e−i
r t . Then, substituting this expression into

equation (24) we obtain

Bµν(t) =
N∑

r=0

t rν
(
ar

µ ei
r t + br
µ e−i
r t

)
. (26)

The time-independent coefficients ar
µ and br

µ are determined by the initial conditions at t = 0
for Bµν(t) and Ḃµν(t). From equations (20) and (21) we find that these initial conditions are

Bµν(0) =
N∑

r=0

t rµt rν√
2
r

, (27)

Ḃµν(0) = −i
N∑

r=0

√

r

2
t rµt rν . (28)

Using the above initial conditions in equation (26) and the orthonormality property of the

matrix
{
t rµ
}

we obtain ar
µ = 0 and br

µ = t rµ√
2
r

. Replacing these values in equation (26) we get

Bµν(t) =
N∑

r=0

t rµt rν√
2
r

e−i
r t . (29)

Using equation (29) in equation (21) we can get easily

â′
µ(t) =

N∑
ν=0

fµν(t)â
′
ν, (30)

where

fµν(t) =
N∑

r=0

t rµt rν e−i
r t . (31)

Now, we can compute the time evolution of the expectation value corresponding to the
dressed occupation number operator n̂µ(t) = â′†

µ(t)â′
µ(t),

nµ(t) = Tr
[
â′†

µ(t)â′
µ(t)ρ̂0 ⊗ ρ̂β

]
, (32)

where ρ̂0 is the dressed density operator corresponding to the atom and ρ̂β is the dressed
density operator for the thermal radiation field and given by equation (16). To compute the
trace in equation (32) we choose the basis |n0, n1, . . . , nN 〉d . From equation (30) and its
Hermitian conjugate we have

â′†
µ(t)â′

µ(t) =
N∑

ν,ρ=0

f ∗
µρ(t)fµν(t)â

′†
ρ â′

ν

=
N∑

ν=0

|fµν(t)|2â′†
ν â′

ν +
∑
ν� =ρ

f ∗
µρ(t)fµν(t)â

′†
ν â′

ρ. (33)
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In the basis |n0, n1, . . . , nN 〉d , the second term in the above equation gives no contribution for
equation (32). Then, replacing equation (33) in equation (32) we obtain easily

nµ(t) = |fµ0(t)|2n0(0) +
N∑

k=1

|fµk(t)|2nk(0), (34)

where the initial distributions for the dressed atom and field modes are given respectively by

n0(0) = Tr0
(
â

′†
0 â′

0ρ̂0
)

=
∞∑

n=0

nd〈n|ρ̂0|n〉d (35)

and

nk(0) = Trk
(
â

′†
k â′

k e−βωk(â
′†
k â′

k+1/2)
)

Trk
(
e−βωk(â

′†
k â′

k+1/2)
) = 1

eβωk − 1
. (36)

Setting µ = 0 in equation (34), we obtain for the time-dependent thermal expectation
value of the occupation number operator, corresponding to the atom,

n0(t) = |f00(t)|2n0(0) +
N∑

k=1

|f0k(t)|2nk(0). (37)

In early references it has been shown that |f00(t)|2 is the probability of the atom to remain at
time t in the first excited level, whereas |f0k|2 is the probability decay of the atom from the
first excited level to the ground state by emission of a field quanta of frequency ωk [19–21].
Then, equation (37) suggests a clear physical interpretation in terms of these probabilities.
Also equation (34) can be interpreted in the same way.

For the frequency field modes given in the paragraph after equation (3) and in the
continuum limit L → ∞ the coefficients f00(t) and f0k(t) are calculated in the appendix. We
obtain the following values (equations (A.17) and (A.19)):

f00(t) =
(

1 − iπg

2κ

)
e−iκt−πgt/2 + 2igJ (t) (38)

and

f0k(t) =
√

2g�ωωk

[(
1 − iπg

2κ

)
e−iκt−πgt/2[

ω2
k − (

κ − iπg

2

)2] − e−iωkt[
ω2

k − ω2
0 + iπgωk

]
]

+ 2ig
√

2g�ωωkI (ωk, t),

(39)

where κ =
√

ω2
0 − π2

4 g2,

J (t) =
∫ ∞

0
dy

y2 e−yt(
y2 + ω2

0

)2 − π2g2y2
(40)

and

I (ωk, t) =
∫ ∞

0
dy

y2 e−yt[(
y2 + ω2

0

)2 − π2g2y2
](

y2 + ω2
k

) . (41)

Replacing equations (38) and (39) in equation (34) we obtain in the continuum limit
�ω → 0, N → ∞,

n0(t) = P00(t)n0(0) +
∫ ∞

0
dω

P0ω(t)

(eβω − 1)
, (42)
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Figure 1. Time behavior for n0(t) given by equation (42), for n0 = 1, ω0 = β = 1 and g = 0.1

where

P00(t) = ω2
0

κ2
e−πgt − 2gJ (t) e−πgt/2

[
2 sin(κt) +

πg

κ
cos(κt)

]
+ 4g2J 2(t), (43)

P0ω(t) = 2
g

κ
ω2

{
κ2 + ω2

0 e−πgt

κK(ω)
− e−πgt/2

K2(ω)

([
2κ

(
ω2 − ω2

0

)2
+ π2g2ω

(
ω2 + ω2

0

)]
cos[(ω − κ)t]

+ πg
(
ω2 − ω2

0

)(
ω2 + ω2

0 − 2κω
)

sin[(ω − κ)t] + 2gI (ω, t)K(ω)

× [
2κ

(
ω2 − ω2

0

)
sin(κt) + πg

(
ω2 + ω2

0

)
cos(κt)

])
+ 4 gκ

I (ω, t)

K(ω)

[(
ω2 − ω2

0

)
sin(ωt) + πgω cos(ωt)

]
+ 4κg2I 2(ω, t)

}
, (44)

and

K(ω) = (
ω2 − ω2

0

)2
+ π2g2ω2. (45)

Although it is not possible to compute analytically the integral in equation (42) we can
perform numerical calculations, for example in figure 1, we display the time behavior for n0(t)

for n0(0) = 1, ω0 = β = 1 and g = 0.1. Note that for large t, n0(t) approaches a fixed value.
This behavior is general as one can see by taking the limit t → ∞ in equation (42), where it
is obtained a well-defined limit. This means that the atom reaches a final equilibrium state.
Also, in this limit the term P00(t) proportional to n0(0) vanishes, that is, the final equilibrium
distribution is independent of the initial atom density operator, ρ̂0, it depends exclusively
on the thermal field degrees of freedom. As shown in [19–21] P00(t) goes to zero almost
exponentially in a time of the order π/g. Taking t → ∞ in equation (42) we get

n0(∞) = 2g

∫ ∞

0
dω

ω2

[(ω2 − ω0)2 + π2g2ω2](eβω − 1)
. (46)

Now, the question is about the physical meaning of the equilibrium value given by
equation (46). To answer this question we compute the thermal expectation value of the
number operator â

′†
0 â′

0, in the case in which the atom-electromagnetic field system is at
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thermal equilibrium at some given temperature θ−1. In this case, the density operator is given
by

ρ̂θ = e−θĤ

Tr(e−θĤ )
, (47)

where Ĥ is given by equation (3). We want to compute

n0 = Tr
(
â

′†
0 â′

0 e−θĤ
)

Tr(e−θĤ )
. (48)

To compute the above expression we write Ĥ as

Ĥ =
N∑

r=0

(
Â†

r Âr +
1

2

)

r, (49)

where Âr and Â
†
r are the normal annihilation and creation operators and given by

Âr = 1√
2
r

P̂r − i

√

r

2
Q̂r (50)

Â†
r = 1√

2
r

P̂r + i

√

r

2
Q̂r . (51)

Now, using equation (11) and from equations (17), (18) and (50), (51) we find that

â′
µ =

N∑
r=0

t rµÂr , â′†
µ =

N∑
r=0

t rµÂ†
r . (52)

Using above expressions in equation (48) and computing the trace by using the basis
|n0, n1, . . . , nN 〉c, which are eigenvectors of Ĥ , we find easily

n0 =
N∑

r=0

(
t r0
)2

eθ
r − 1
(53)

and in the continuum limit we get (see the appendix, equation (A.20))

n0 = 2g

∫ ∞

0
dx

x2

[(x2 − ω0)2 + π2g2x2](eθx − 1)
. (54)

In the case in which θ = β, equations (54) and (46) are identical. Then, we conclude from
above calculations that the atom reaches a final thermal equilibrium distribution, it thermalizes
with the thermal radiation field at temperature β−1. Note that for weak coupling g � ω0, we
can obtain from equation (46) or (54),

n(∞) ≈ 1

eβω0 − 1
, (55)

a Bose–Einstein distribution, an expected textbook result.

4. Conclusions

In this work, we have shown that an atom (approximated by the dressed harmonic oscillator)
initially in any arbitrary state and suddenly coupled to a thermal radiation field evolves in
time to a final thermal equilibrium state. The mean time, necessary for this to occur, can be
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roughly estimated from equations (43)–(44) and is of the order π/g, an intuitively expected
result. Also, we have found a physically suggestive result for the time evolution of the thermal
expectation value of the dressed occupation number operators, equations (34) and (37). In
general, this time evolution is given in terms of the time-dependent probabilities associated
with the emission and absorption of field quanta.

We would like to remark that if one works in bare coordinates a similar result to the one
given by equation (34) is obtained but with different time-dependent coefficients and non-
homogeneous terms, i.e., there are time-dependent terms that do not multiply nµ(0) (see, for
example, equation (117) of [37]). However there are two problems with this result. First, n0(t)

is discontinuous at t = 0, see equations (117) and (B6–B7) of [37]. Second, one of the non-
homogeneous terms is divergent (see, for example, equation (121) of the cited reference and
comments below this equation). We can solve this ultraviolet divergence by a renormalization
procedure, that is equivalent to normal ordering the annihilation and creation operators. The
discontinuity problem of n0(t) can be attributed to the sudden coupling of the bare atom
with the field modes. However in the dressed coordinate approach, as one can note from
equation (42), n0(t) is continuous at t = 0, even so also in this case the atom suddenly couples
to the thermal bath. Then, the discontinuity of n0(t) can be viewed as a pathology of the bare
coordinates approach. Also n0(t), in the dressed coordinates formalism is finite, as one can
see from equation (42) or from figure 1, and no further renormalization is required. Finally,
in bare coordinates, the time-dependent coefficients that appear in the expression for n0(t)

are not related to physically significant quantities. All these advantages suggest us that the
dressed coordinate approach is physically more adequate than the bare coordinates approach.
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Appendix. The continuum limit

We want to compute, in the continuum limit, the sums of the type

Rµν =
N∑

r=0

t rµt rνRµν(
r), (A.1)

where Rµν(
) is an analytic function of 
. For this end we define a function W(z),

W(z) = z2 − ω2
0 +

N∑
k

η2z2

ω2
k − z2

. (A.2)

From equations (7) and (8) we can note that the 
r ’s are the roots of w(z). For complex values
of z and using η2 = 2g�ω, we can write equation (A.2) in the continuum limit as

W(z) = z2 − ω2
0 + 2gz2

∫ ∞

0

dω

ω2 − z2
. (A.3)

For complex values of z the above integral is well defined and can be evaluated easily using
the Cauchy theorem, obtaining

W(z) =
{
z2 + igπz − ω2

0, Im(z) > 0
z2 − igπz − ω2

0, Im(z) < 0.
(A.4)
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We start by computing R00(t),

R00 =
N∑

r=0

(
t r0
)2R00(
r). (A.5)

From the expression for t r0 , given in (7) and equation (A.2) it is easy to show that(
t r0
)2 = 2
r

W ′(
r)
, (A.6)

where the prime means derivative with respect to the argument. Since the 
r ’s are the roots
of W(z), we can write equation (A.5) as

R00 = 1

iπ

∮
C

dz
zR00(z)

W(z)
, (A.7)

where C is a counterclockwise contour in the z-plane that encircles the real positive roots 
r ,
that is, a contour that encircles the real positive axis. The integral in equation (A.7) can be
evaluated choosing a contour that lies just below and above of the real positive axis. Below
the real positive axis we have z = α − iε and above z = α + iε, where α is real positive and
ε → 0+. Then, we have for equation (A.7),

R00 = 1

iπ

∫ ∞

0
dα

[
(α − iε)R00(α − iε)

W(α − iε)
− (α + iε)R00(α + iε)

W(α + iε)

]
. (A.8)

From equation (A.4) we get for W(α − iε) and W(α − iε) respectively in the limit ε → 0+,

W(α + iε) = α2 − ω2
0 + igπα,

W(α − iε) = α2 − ω2
0 − igπα.

(A.9)

Taking the limit ε → 0+ in equation (A.8) and using equation (A.9) we get

R00 = 2g

∫ ∞

0
dα

α2R00(α)(
α2 − ω2

0

)2
+ g2π2α2

. (A.10)

As a check that equation (A.10) is correct we take the case R00 = 1 and using Cauchy theorem
it is easy to show that the above integral is 1, as expected from the orthonormality property of
the matrix

{
t rµ
}
.

Next we compute R0k(t),

R0k =
N∑

r=0

t r0 t rkR0k(
r). (A.11)

Using the expressions for t r0 and t rk , as given by (7), in equation (A.11) we obtain

R0k = ηωk

N∑
r=0

(
t r0
)2R0k(
r)(
ω2

k − 
2
r

)
= ηωk

iπ

∮
C

dz
zR0k(z)(

ω2
k − z2

)
W(z)

, (A.12)

where in the second line the pole at z = ωk gives a zero contribution since W(ωk) as given by
equation (A.2) or (A.3) is infinity. Evaluating equation (A.12) by choosing the same contour
as in the evaluation of R00(t), we get

R0k = −ηωk

iπ

∫ ∞

0
dα

[
(α − iε)R0k(α − iε)

W(α − iε)
[
(α − iε)2 − ω2

k

] − (α + iε)R0k(α + iε)

W(α + iε)
[
(α + iε)2 − ω2

k

]
]

. (A.13)
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Using equation (A.9) in equation (A.13), we obtain

R0k = −ηωk

iπ

∫ ∞

0
dα

[
αR0k(α)(

α − iπg

2 − κ
)(

α − iπg

2 + κ
)
(α − iε − ωk)(α − iε + ωk)

− αR0k(α)(
α + iπg

2 − κ
)(

α + iπg

2 + κ
)
(α + iε − ωk)(α + iε + ωk)

]
, (A.14)

where κ =
√

ω2
0 − π2

4 g2. To check the validity of equation (A.14) we take R0k = 1 and using
Cauchy theorem it can be proved that the integral vanishes as expected from the orthonormality
of the matrix

{
t rµ
}
.

Now, it is straightforward to compute the coefficients fµν(t),

fµν(t) =
N∑

r=0

t rµt rν e−it
r , (A.15)

in the continuum limit. Taking µ = ν = 0 in equation (A.15) and using equation (A.10) we
get

f00(t) = 2g

∫ ∞

0
dx

x2 e−itx(
x2 − ω2

0

)2
+ g2π2x2

, (A.16)

from which we find

f00(t) =
(

1 − iπg

2κ

)
e−iκt−πgt/2 + 2ig

∫ ∞

0
dy

y2 e−yt(
y2 + ω2

0

)2 − π2g2y2
, (κ2 > 0). (A.17)

Taking µ = 0, ν = k in equation (A.15) and using equation (A.14) we get

f0k = −ηωk

iπ

∫ ∞

0
dx

[
x e−itx(

x − iπg

2 − κ
)(

x − iπg

2 + κ
)
(x − iε − ωk)(x − iε + ωk)

− x e−itx(
x + iπg

2 − κ
)(

x + iπg

2 + κ
)
(x + iε − ωk)(x + iε + ωk)

]
. (A.18)

We can integrate equation (A.18) in the complex plane by using Cauchy theorem. We choice
as the closed contour of integration, the path that goes in the real axis from 0 to ∞, then go
to the negative imaginary axis along the part of the circle with radius R → ∞ and argument
−π/2 < θ < 0 and closes the contour along the imaginary axis from −i∞ to the origin. Note
that inside the contour of integration only the second term in the bracket of equation (A.14)
has two poles at −igπ/2 + κ and −iε + ωk . Then, we get for equation (A.18)

f0k(t) = −ηωk

iπ

{
(−2iπ)

[( iπg

2κ
− 1

)
e−iκt−πgt/2

2
[(

κ − iπg

2

)2 − ω2
k

] − e−iωkt

2
[
ω2

k + iπgωk − ω2
0

]
]

−
∫ 0

−∞
dy

[
y eyt(−y2 + πgy − ω2

0

)(
y2 + ω2

k

) − y eyt(−y2 − πgy − ω2
0

)(
y2 + ω2

k

)
]}

= ηωk

[(
1 − iπg

2κ

)
e−iκt−πgt/2[

ω2
k − (

κ − iπg

2

)2] − e−iωkt[
ω2

k − ω2
0 + iπgωk

]
]

+ 2igηωk

∫ ∞

0
dy

y2 e−yt[(
y2 + ω2

0

)2 − π2g2y2
](

y2 + ω2
k

) , (κ2 > 0). (A.19)
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To compute

n0 =
N∑

r=0

(
t r0
)2

eθ
r − 1
(A.20)

in the continuum limit we use equation (A.10), obtaining

n0 = 2g

∫ ∞

0
dx

x2

[(x2 − ω0)2 + π2g2x2](eθx − 1)
. (A.21)
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